Cytoskeletal self-organization in neuromorphogenesis
نویسنده
چکیده
Self-organization of dynamic microtubules via interactions with associated motors plays a critical role in spindle formation. The microtubule-based mechanisms underlying other aspects of cellular morphogenesis, such as the formation and development of protrusions from neuronal cells is less well understood. In a recent study, we investigated the molecular mechanism that underlies the massive reorganization of microtubules induced in non-neuronal cells by expression of the neuronal microtubule stabilizer MAP2c. In that study we directly observed cortical dynein complexes and how they affect the dynamic behavior of motile microtubules in living cells. We found that stationary dynein complexes transiently associate with motile microtubules near the cell cortex and that their rapid turnover facilitates efficient microtubule transport. Here, we discuss our findings in the larger context of cellular morphogenesis with specific focus on self-organizing principles from which cellular shape patterns such as the thin protrusions of neurons can emerge.
منابع مشابه
F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis.
Coordinated functions of the actin cytoskeleton and microtubules, which require careful control in time and space, are indispensable for the drastic alterations of neuronal morphology during neuromorphogenesis and neuronal network formation. Actin filament formation driven by the Arp2/3 complex and its activator neural Wiskott-Aldrich syndrome protein (N-WASP) is important for proper axon devel...
متن کاملMutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures.
The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkag...
متن کاملF-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis Abbreviated Title: Syndapins are crucial for neuromorphogenesis
متن کامل
Molecular motor-induced instabilities and cross linkers determine biopolymer organization.
All eukaryotic cells rely on the active self-organization of protein filaments to form a responsive intracellular cytoskeleton. The necessity of motility and reaction to stimuli additionally requires pathways that quickly and reversibly change cytoskeletal organization. While thermally driven order-disorder transitions are, from the viewpoint of physics, the most obvious method for controlling ...
متن کاملSelf-Organization of Muscle Cell Structure and Function
The organization of muscle is the product of functional adaptation over several length scales spanning from the sarcomere to the muscle bundle. One possible strategy for solving this multiscale coupling problem is to physically constrain the muscle cells in microenvironments that potentiate the organization of their intracellular space. We hypothesized that boundary conditions in the extracellu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014